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where k0, R and k0, x are the real and imaginary parts 
of the roots of the equation d(k)= 0. Then we translate 
the integral, letting k' = k - k o ,  R. This gives us 

O ( Z - - Z t ) A z C  A t ,  

A 4 ( X - -  X , Z - -  Z ' )  = - -  ~ z ( B 1  - B2) 

x exp {i[(Al + A2)(z-z ') /2 +c~k0, R]} 

f~ sin [fl(k 2 ± z.2 wzl s ~0 ,  I] J 
x (k2 +k2 1 ) l / ~ e x p ( i c & ) d k  (A10) 

- - C O  

where e = ( x - x ' ) - ( B 1 - B 2 ) ( z - z ' ) / 2  and f l=[ (B2-  
B~) (z-z ' ) /2]>O. Next, we make two more obvious 
transformations; first let k=ko, x sinh t and write out 
the sine in terms of exponentials. Then, let c~ sinh t + 
fl cosh t = _+ (j~2__ (X2)1]2 cosh 0 where fl > 0 and fl > 
and the + ( - )  goes with the first (second) exponential. 
These transformations result in the integral in equation 
(A10) becoming 

l f_~ --t~2) 1/2 ~- ~s in  [[ko, l l ( f l  2 cosh 0]d0 

= J0[l~0, ,1(/~ 2 - ~2),/2]. 

We note that kO, R=(AI-A2)/12 and k0,1= +2A3/12 
where fl2-ct2= - ( f l + c 0  (c~-fl)= - /qP2 ;  therefore we 
can write equation (A10) as 

A 4 ( x - x '  ; z - z ' ) =  - O(z-z')CaAa exp(i~o)Jo(~). (Al l )  
12 

To compute the diagonal elements of A, we need the 
relations: 

727 

and 

~-~ + ~ ~ -  ~ ' = -  ? z  + 82 ~ -  ~ = 12. 

Then using these relationships we obtain 

A~(x-  x' ; z -  z') = O(z-  z'){d[pd exp [iA~(z- Zt)]  

(A13) 
and 

A 2 ( x - x '  ; z - z ' )=O(z - z ' ) l d [p2]  exp [iA(z-z')] 

exp  ( 
(A14) 

where the Dirac delta functions are a result of having 
to differentiate the characteristic functions, while J1 
is a result of having to differentiate J0. 
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The first-order term of the joint probability distribution of Ehl +k, • •., Ehr,,+k, for h i , . . . ,  hm fixed and k 
variable, is derived for both space groups P]" and P 1. It appears that the first-order term affects the 
most probable values for the moduli of the structure factors, but that it has no influence on the most 
probable values for the phases. 

Introduction 

The main term of the joint probability distribution of 
an arbitrary number of structure factors has been 
obtained from the central-limit theorem (Tsoucaris, 
1970). From this distribution, formulae for the most 

probable values of structure factors have been derived 
(Tsoucaris, 1970; d e  Rango, Tsoucaris & Zelwer, 
1974). The present paper deals with the first-order 
term of this distribution. To calculate this term use is 
made of Hauptman's  (1971) method for the derivation 
of the joint probability distributions of two and three 
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structure factors. The influence of the first-order term 
on the most probable values for the structure factors 
is discussed. 

Joint probabilities 
We shall derive the main term and first-order term of 
the joint probability distribution P(X1,. . . ,Xm) of 
Eh l+k , ' '  .,Eu~+k, where hi . . . .  ,hm are fixed recip- 
rocal-lattice vectors and k is a variable one. 

For space group PT the expressions for the nor- 
malized structure factor Eu and the unitary structure 
factor Uu are 

Eh = -~221/f COS 2nh.  rs (1) 
j = l  

and 
m2 2Zj 

Uh= ~ cos 2nh.  r j ,  (2) 
J= 1 0.1 

where N is the number of atoms in the unit cell, Zj is 
the number of electrons of atom j and 

N 

0.,-- Z Z ] .  (3) 
j = l  

By Ps(~l . . . .  ,~m) we denote the joint probability 
distribution of 

2Z./ 2Z./ 
alz/---- i cos 2n(hl + k ) .  r s , . . .  , a~---7£ cos 2n(hm + k ) .  r j .  

The characteristic function qs(xl . . . .  , Xm) of 
Ps(~l,. .  ",era) is defined by 

qs(xl . . . .  ,Xm): I~_oo . . .  I_~ exp[i ~ xi~i] 
l=1  

xpj(~l , . . . ,~m) d ( l . . . d~m.  (4) 

If p l , . . .  ,PN/2 are assumed to be independent, the char- 
acteristic function Q(xl , . . . ,x , , )  of P(X1 . . . .  ,Xm) 
equals the product of the qj's (see e.g. Cram6r, 1971), 

N[2 
Q ( x l , . . . , X m ) =  1-I qs(xl . . . .  ,Xm). (5)  

j = l  

First we derive an expression for Q(xl , . . .  , X r a ) .  The 
next step is the calculation of P(X t , . . . ,  Xm), 

P ( X l ,  . . . , x . ) -  
I 

(27c) m I~oo' '"  I~oo exp [ - i  ~ Xixl] 1=1 

x Q(xl, . . . ,Xm) dxl . . .dxra.  (6) 

Formula (4) can be written as 

q s ( x l ,  . . . , X m )  

( 2Zs ~ x1 cos 2 n ( h , + k ) r s ]  ) = exp[i a-~7 g " k"  
i=/. 

(7) 

The sum of the cosines in (7) is replaced by one cosine, 
analogous to Hauptman's  calculations for the cases 
m = 2  and m = 3 ,  

m 
~, x1 cos 2n(hl + k ) .  r./= A s cos (2nk.  r s + es) , (8) 
i=1 

where 
m 

As=( ~ xqxi2 cos 2n(h i , -  hi2) • .p" ~1/2 , (9) 
h = l  i2=1 

cos e./=Af 1 ~ xl cos 2nhi. rs (10) 
i=l 

and 

sin e s = A f  1 ~, xi sin 2nhi . r s . (11) 
i=1 

Next, the exponential form is expanded into Bessel 
functions, using (Watson, 1966, p. 22) 

exp (iz cos O)=Jo(z)+2 ~ i"J,,(z) cos nO. (12) 
n=l 

After averaging, the resulting expression for 
qs(xl,...,Xm) becomes 

[ 2Zs As) , qs(x~ . . . .  , Xm)= Jo \ ~z/z (13) 

where it is assumed that there are no atoms which have 
three rational coordinates. Next, for Q(x~ . . . .  ,Xm) we 
obtain 

N/2 [ 2Zs i 
Q(x l , . . . ,Xm) :  1-I Jo ~ al/2 mj / ./=1 

{ 1 ~ Z ~ A ~ } {  1 1 m2 } . . . .  ZjA./ (14) ~ exp 0"2 s=l 4a~ ~" 4 4 
j = l  

(Hauptman, 1971). 
For the exponential we calculate 

1 m 2 Z s A j _ e x p _  [1~=1 ~ 1  2 2 
exp -- ~-2 s .--, xqxi2 

= i i2=1 
N/2 ] 

× Z --Z~ cos 2n(hq-hi2)  . rs =exp  - ½ x ' U x ,  
./=1 0"2 

(15)  

in which x is a column vector with components 
xl , . . . ,Xm, x' is the corresponding row vector and U 
is a Karle-Hauptman matrix (Karle & Hauptman, 
1950). Its components are 

Uq 12 = U~,n - h~2, (16) 

where U~, is a unitary structure factor of the squared 
structure, 

mz 2Z~ 
U~,= ~ cos 2nh.  rs. (17) 

j = l  0"2 
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For structures consisting of equal atoms U~ = Uh. The 
expression between the second pair of braces in (14) 
can be written as 

1 N/2 
1 ~-da~-j~_,xg~A~=l-~... ~ Nixi2ia,4xilx,2xtax,4, 

= i1=1 t4=1 
(18) 

where 

N t l i 2 t 3 i 4  - -  0"4 3,. 20-I ( U hi 1 _ ht 2 .-F hi3 -- h14 "Jr- V f l l  - h t 2  - hi3 + h i4 )"  

(19) 

components )(1,...,Xm and X' is the corresponding 
row vector. 

For space group P1, where 

and 

Zj 
Eh = ~ exp 2nih rj (25) j=l~---  ~ 

Uh= ~ Z i exp 2nih. r j ,  (26) 
j = l  0"1 

analogous calculations lead to 

U~ is a unitary structure factor of the structure to the 
fourth power, 

N/2 2ZJ 
U:h= ~ cos 2nh . r j .  (20) 

j = 1 0"4 

For structures consisting of equal atoms U~= Uh and 
0"4/a22= 1/N. The most important Nqt2iat4 are 

N i l t l i 2 i 2  = 0-4/0-22 ( 2 1 )  
and 

0"4 
= = U 211il -- 2hi2) Nt~i2q,z Nq,2~2q -~22( 1 "-{'- f 

0"4 
N ~-o.~, ilv ~iz. (22) 

Neglecting the other Nqiz~3~4, the characteristic func- 
tion of P(X1,...,Xm) can be written as 

a(xl . . . .  ,Xm)Z {exp -- ½x'Ux} 

0-4 (2 z z x~) (23) 
- -  X i l X i 2  ~ . 

X 1 ~ i 1 = l  12=1 i 

Next we use (6). The calculation of the integral 
involves a transformation of variables x = C y  (see 
Cram6r, 1971, p. 119) such that C'UC is the diagonal 

m 
matrix formed by the eigenvalues of U. For ~ x 4, 

i=1 
between the second pair of braces in (23), we use the 
approximation x1 =Yi. In fact this means that for the 
calculation of the first-order term in P(X1,...,Xm) 
(order" 0-4/a~) we assume small off-diagonal elements 
in the Karle-Hauptman matrix. This assumption is 
also taken into account after the evaluation of the 
integral. The following result is obtained, 

1 
P(XI, . . . , Xm) ~, -(2n)m/2u17 ~- {exp -½X'U-~X} 

0"4 i =1 ra 4 × { 1 -  -~22 [2(  ~ X2) 2-  ,~=IX' 

" ]} - ( 4 m + 2 )  ~.. X~+2mZ+m , 
l=1  

(24) 

in which U and U -1 are the determinant and the in- 
verse of U respectively, X is a column vector with 

1 (exp -X*U-1X} P(X~,...,Xm)~ ;im-u 

{ 0"4 
× 1 -  ~ -  [2(,=1 IX'lZ)2- 

- 4 m  ~ IX, l'+2m2]}. 
i=1  

k lXi] 
/=1  

(27) 

In this formula X t denotes the complex conjugate of 
X'. The components of U are given by (16), now with 

U~= ~ __Z~ exp 2nih. rj. 
j = l  0"2 

(28) 

Again, for equal-atom structures U~= Uh. 
The main terms in (24) and (27) have been found 

by Tsoucaris (1970). P(X1,X2) and P(X1,Xz, Xa), both 
for structures consisting of equal atoms, have been 
derived by Hauptman & Karle (1958) for space group 
P ]  and by Hauptman (1971) for P1. For unequal 
atoms and space group PT, the joint probability 
distribution P(X1,X2) has been obtained by Heiner- 
man, Krabbendam & Kroon (1975). (24) and (27) are 
in agreement with those results. 

The most probable set of values for the Eht+k'S is 
the one for which P(X1,. . . ,  Xm) is as large as possible. 
The first-order term does not depend on the phases 
(signs) of the Xi's. This implies that the first-order 
term does not affect the most probable values for the 
phases (signs)oflthe Ehl+k'S. It only affects the most 
probable values for the ]Eht+k['S, especially ifm is of the 
order 0-~/o'4 (= N for equal-atom structures). It follows 
that the maximum-determinant rule for phase determi- 
nation (Tsoucaris, 1970), which is based on the main 
terms of (24) and (27), remains valid when the first- 
order term is included. However, it must be emphasized 
that the fact that the first-order term has no influence 
on the most probable values for the phases does not 
imply that the same holds for the second and higher- 
order terms. 

Conditional probabilities 

After bringing the first-order terms in (24) and (27) in- 
to the exponent (Karle, 1972) we obtain for space 
group P ]  
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1 { 
P ( X 1 , . . . , X ~ ) ~  (2n)m/zu~/2 exp - ½ X ' U - l X  

0- 4 

i=1 i=l  

- ( 4 m + 2 )  ~ X2+2mZ+ml} ,  (29) 
i=1 

and for P1 
1 { 

P(X~, . . ., Xm) ~ ~ exp - X ' U -  ~X 

_ ~ 2  2-[2( ~ I X i  - -  ~ IX/[ 4 
i=l  l=l  

- 4 m  l=1 ~ IX~IZ + 2m2]} " (30) 

Denote Eh~+~, by Ep. For given values of E l , . . . ,  Eq_~, 
E,+I . . . .  ,E~ the most probable value for E~ (denoted 
by E~) is that value of Xq for which P(E~ , . . . ,E ,_ i ,  
X~,E~+t . . . .  ,E~) is as large as possible. Following the 
same procedure as Tsoucaris (1970) and de Rango, 
Tsoucaris & Zelwer (1974) the following formulae are 
obtained. 

Space group PT 

~ U~IE~ 
i=1 

E ~ Z -  '*~ (31) 
0"4 m 

[ Z _t - -  + 2 ( E ~ - 3 ) ]  
O'2 2 ~=1 

i C q  

Neglecting a -2 ~(E~-3)  in the denominator we get 

~ U~E~ 
l=1 

Ea,,~ - ~*'~ . (32) 
0.4 ~ ( E l - l )  Ufi 1 + 0.~ ~=~ 

i C q  

Except for the first-order term, formula (32) is the 
same as the result obtained by Tsoucaris and de Rango 
et al. The probability distribution of Ea, given the 
other E's, is 

P ( X ~ I E ~ ,  . . . , E ~ _ , , E ~ +  I ,  . . . , E r a )  

1 ( X q - E ~ )  2 
,.~ (2n)~/z0"~ exp 2o'2 ' (33) 

where/~'~ is given by (32) and 

2 [ U ~ +  0.a ~- 0.~= a~ ~" ( E ~ -  1)] -1 . (34) 
i=I 

Note that in contrast with the result of Tsoucaris and 
de Rango et al., who found 0"~-2-(U~l)-x, our expres- 
sion for the variance depends on the IE~['s. As the 
lEvi's become larger the variance becomes smaller. 
This is in agreement with the fact that large IEil's give 
more information than small ones. From (33) we find 
for the probability that EaEq is positive 

P(E~E~ > 01El , . . . ,  E~_ ~, IEql, E~ + 1 , . . . ,  E~) 

½+½ tanh Aa (35) 
2 '  

in which 

2 IE~E~I. (36) 
0"q 

From (32) and (34) it follows that Aq does not depend 
on the first-order term. 

Space group P1 

i=1 
i C q  

0" 4 
U~ 1+ 0"-~ [ ~, (IE, I z -  1)+½(1£q12-2)1 

/=1 

(37) 

Neglecting {(IEal2-2) in the denominator of (37) we 
obtain (32) with the El  replaced by IEil 2. The proba- 
bility distribution of E~, given the other E's, is 

P(X IE  . . . .  Eq+ . . . .  ,Era) 

1 IX. -Eol  2 
"~ n0.~ exp eo 2 (38) 

2 E~ and 0"~ are given by (32) and (34) respectively, where 
in both formulae the El  are replaced by [Eil z. From 
(38) we obtain the probability distribution of the 
phase ~pq of E~, 

P ( ~ I E 1 , . . . ,  Eq_ 1, lEvi, E~ + ~, . . . , Era) 

... exp [A~ cos ( ~ - ~ ) ]  (39) 
"" 2nI0(A~) ' 

where A~ is given by (36) and Oq is the phase of Eq. 
The first-order term has influence on levi and 

P(XaIE~,. . . ,E~_~,E~+~,.. . ,E,,) ,  especially if the IEil's 
are large, but it has no influence on the phase (sign) 
and the phase (sign) probability. 

The author thanks Drs H. Krabbendam and J. 
Kroon and Professor A. F. Peerdeman for stimulating 
discussions and critical reading of the manuscript. 
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